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Abstract-In this paper we discuss a general procedure for determining the critical points of the dispersion
spectrum at which there is a coalescence of frequencies, i.e. critical points which are roots of double
multiplicity. We further show how the general behavior of the dispersion surface in the neighborhood of the
critical points can be determined analytically. For the purpose of illustration, we consider (a) plane waves
propagating in an infinite, elastic, isotropic plate, which corresponds to the case of a differential equation with
constant coefficients, and (b) Floquet waves of the SH-type propagating in a layered, elastic medium, which
corresponds to the case of a differential equation with periodic coefficients.

1. INTRODUCTION
In the study of dynamic behavior of linearly elastic bodies, dispersion spectra, i.e. relations
between the frequency of free vibrations and the components of the vector wave-number,
occupy a place of central importance. For homogeneous, isotropic bodies of infinite extent such
spectra are single-valued, i.e. for every given value of the vector wave-number there corresponds
a unique value of the frequency. By contrast, in bounded or inhomogeneous bodies (e.g. plates,
shells, laminated composites, etc.) single-valuedness may no longer exist for certain selected
values of the wavenumber, i.e. two or more distinct values of the frequency are determined for a
given value of the wave-number. For certain choices of the system parameters it may even
happen that two distinct neighboring values of the frequency may coalesce for special values of
the wave-number, corresponding to what will be termed here as critical or conical points.

The present paper is devoted to a systematic study of such critical points in dispersion spectra
of elastic bodies. The necessary and sufficient conditions are established, under which the
frequency equation will have double roots. Next, the nature and properties of the dispersion
spectrum in the vicinity of the critical points are analyzed. By using a two-dimensional
wave-vector, it is shown that the dispersion spectrum in the neighborhood of the critical point is a
conical surface. Thus the critical point itself may be called a conical point.

As a first simple illustration of the general development, the coalescence of cut-off
frequencies of Rayleigh-Lamb waves in a homogeneous, isotropic, elastic plate of uniform
thickness is considered. As a second illustration of the general theory, the dispersion spectrum of
Floquet waves which are horizontally polarized and propagating in a periodically-layered
composite of infinite extent is investigated. It is shown that in this case the conical points can
exist only at the ends of the Brillouin zone, and their properties are discussed in detail.

It is expected that other examples could be presented to make use of the general theory. From
topological considerations it can be shown that for a single-valued function defined over a domain
which is periodic in the reciprocal lattice, there exist a number of critical points. Consequently,
critical points of various types will exist in dispersion spectra of elastic bodies with periodic
structure. However, their discussion will be deferred to a possible future study.

2. CONTACT POINTS AND THE NATURE OF THE DISPERSION SURFACE

In this section we first discuss the necessary and sufficient conditions for the frequency
equation to have non-simple roots, i.e. multiplicity of order two. We then analyze the nature of
the dispersion surface in the neighborhood of this non-simple zero of multiplicity two. The
existence of the multiple roots of the frequency equation was apparently first noticed by
Mindlin[l] in his study of the dispersion spectrum of plane waves in an infinite, isotropic plate,
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and he named this phenomenon "coincidence of thickness frequencies", that is, the coalescence
of two distinct but neighboring frequencies of the normal modes of the plate. His study in the
present context can be described as the study of contact points of order one of a frequency
equation with one independent wave-number. Furthermore, it may appear that he restricted his
analysis to cut-off frequencies only, that is, when the traveling waves change to attenuated
waves, at infinite wavelength. Recently, in a much more general context, in dealing with
differential equations with periodic coefficients, coalescence of frequencies has been noticed in
the case of Floquet waves in periodic structures. When two independent wave-numbers are
involved, the dispersion spectrum for Floquet waves is a surface, exhibiting stopping bands and
passing bands and a periodicity of the reciprocal lattice distance. However, if the dispersion
surface has a contact point, the stopping band disappears, effectively doubling the width of the
Brillouin zone, and thus increasing the band width of the passing band.

In the case of Floquet waves these contact points are important features of the dispersion
surface. This investigation is concerned with the analysis of the contact points and the nature of
the dispersion surface in the neighborhood of these critical points. For the sake of completeness,
we first consider the problem in its generality.

Analysis. Consider a spectral frequency equation

F(fl, A. K) = 0, (1)

corresponding to a self-adjoint differential operator, where 0 is the non-dimensional frequency
and the two independent variables A, K are the two non-dimensional wave-numbers for waves
propagating in two mutually orthogonal directions. The frequency 0 is always real, but the two
wave-numbers can be complex. We assume that in the neighborhood of a typical point Po:
{Oo, Ao, Ko}, the function F together with its three first partial derivatives are continuous. If at this
point

F(Oo, Ao, Ko) = 0,

(aF) = (aF) = (aF) = 0
aO 0 aA 0 aK 0 '

(2)

then the point Po is a critical point of the spectral function F and is called a multiple root of order
two. The contact of the surfaces at this point is of order one. Contact points of the spectral
surface corresponding to order I (odd), are the critical points at which there is coalescence of
frequencies of two different spectral surfaces. The exact location of such points in the
(0, A, K)-affine space depends on the simultaneous solution of the system of eqns (2), that is, at
these analytical critical points the gradient vector of the dispersion surface vanishes identically.

We now determine the shape of the surface in the neighborhood of the critical point Po, where
the three first derivatives of the spectral function F are assumed to vanish simultaneously. Using
Taylor series expansion with Lagrange remainder, and assuming that the three second derivatives
do not vanish at point Po, and that these derivatives together with the third derivatives are
continuous near the point, we get

(3)

where

(4)

and P* == {(fh, A*, K*): 00 + t*(n - 00), Ao+ t*(A - Ao), Ko + t*(K - Ko)}, 0< t* < 1. We may now
note that in the Taylor expansion, if we omit the third order terms and set the terms of second
degree in (0 - 00), (A - Ao) and (K - Ko) equal to zero, we obtain the equation of the cone

[
a a a]2

(fl- no) an + (A - Ao) aA + (K - Ko) aK F(n, A, Kllpo = o. (5)
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It can be shown that this equation represents the locus of the tangents to all curves on the surface
passing through the critical point Po. The point Po is therefore called a conical point [2].

Consider now a plane K = Ko passing at the point Po through the surface of the cone. The
equation of the curve of intersection, in the neighborhood of the point Po, is

(6)

To obtain the equation of the tangent to the curve of intersection, we assume that Ff!<AJ;f. 0, and
set

(fl - flo) = a(A - Ao),

in eqn (6). Then, on dividing by (A - Aof, the resulting equation takes the form

(7)

(8)

where (a 2Flaflo2) == (a 2Flafl2)po == Ff!<AJ, etc., and Q(A - Ao; a) is a function assumed to remain
finite as A approaches Ao• Equation (8) can easily be rewritten in the form

where

(a - a +)(a - a -)Ff!<AJ +(A - Ao)Q = 0,

+
a _ [_p + (p2 _ F F )1I2]F-1

- - floAo - OoAo f!<AJ AoAo f!<AJ.a

(9)

(10)

When the discriminant is real, the two distinct roots (a +, a -) are both real. By assumption the
function Q is bounded, and therefore as A approaches Ao, the two distinct roots of the equation
approach the values a + and a -, respectively. Therefore it follows that eqn (8) has roots of the
form

(11)

where E approaches zero as A approaches Ao• Hence, there is one branch of the spectral curve
passing through the critical point Po and lying in the plane K = Ko, which is tangent to the straight
line

where a + is the slope of the line and given by eqn (10)•. It can similarly be shown that the other
branch of the spectral curve, passing through the same critical point and lying in the same plane,
is tangent to the straight line

(12h

where a - is the slope of the line given by eqn (10)z.
Let 4> be the angle between the two tangent lines with slopes a+ and a-. Then from eqn (10)

(13)

and the angle 4> between the two branches of the curve is real when the numerator is real. In the
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particular case when FOoAo ;: 0 and Ff!<Al < 0, this equation takes the simple form

1 _ [( Ff!<Al)1/2 ( F"<JA<J)1/2]-1-tan 4> - --- - --- .
2 F"""" Ff!<Al

(14)t

Similarily if we consider a plane A= Ao passing through the spectral surface of the cone, the
equations of the tangent lines to the curve of intersection at the double point Po where Ff!<Al to,
are given by

where

f3+ - [F + (F2 F F )'/2]F-1f3 - - - OoKO - OoKO - nono KOKO .floOoo

(15)

(16)

When the discriminant is real, the two values of f3 are distinct and real and the double point is like
the node of a lemniscate. The angle between the two real distinct tangent lines is given by

(17)

For certain values of the parameters, the discriminant in eqns (10) and (16) can be zero. In this
case we obtain two coincident tangents and the corresponding angle 4> is zero. In such a situation
the two branches of the curve touch each other, and there is in general a cusp at the contact point
Po. Whether the cusp is of the Keratoid (i.e. like a hom) or of the Ramphoid (i.e. like a beak)
species requires further examination of the higher order terms.

Consider now a plane n = 00, parallel to the (A, K)-plane at the point Po and passing through
the spectral surface. We tentatively assume that FKOKO t O. Then the equations of the tangent lines
to the level-curves of constant frequency and passing through the critical point Po are given by

where

+

'Y - [-F + (F2 - F F )1/2]F- 1
- - AOKO - "-OKO -'OAO KOI(O KOKO'

'Y

When the descriminant is real, the two tangent lines are real and subtend an angle

When F""KQ == 0, F"""" > 0 and FKQKQ < 0, this takes the simple form

1 _ [( FKoKO) 1/2 ( F"<JA<J)1/2]-1-tan 4> - --- - -- .
2 FADAD FKQKQ

(18)

(19)

(20)

(21)

When the two tangent lines are real and distinct, the contact point is a node, as discussed earlier.
We now tentatively assume that in the case of Floquet waves the two mixed partial

derivatives Fo"KO and FADKO both vanish simultaneously at the critical point. In this case, the
equation of the quadratic surface takes the form

tWe have here used the fact that F..j(-F.. )'12 = -(IEW 12 when F.. <0.
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Consider now an affine-mapping

A=A,

K=Ko +(K - Ko)I1Fn.:o."

0= 00 +(0- Oo)+ (K - Ko)Fo"KOFn.:o."

427

(23)

where 11 =(FAnKo - FnonoFKOKO)l!2. This mapping is (l : 1) when 11 #- O. Under this affine-mapping the
quadric surface takes the canonical form

(A - Ao}2 +(K - Ko)2 = (0 - 00)2.
-Fnoo" FAoAo FAgAg

(24)

When Fnono <0, this equation represents an elliptic cone in (n, A, K)-coordinate space, symmetric
with respect to all three coordinate planes passing through the point Po: {Oo, Ao, Ko}. In fact, the
generator of the conical surface is a straight line passing through the points Po and Qo, where the
point Qo lies on the ellipse

(25)

with semiaxes (-Fnono)1/2 and (F..oAO)I/2, respectively.
From the canonical representation of the cone with Fnono <0, we immediately see that a plane

(26)

cuts the quadric surface only at one isolated point (Ao, Ko) when (FnonoFAoAO) < 0 and 11 is real. The
direction-cosines of the normal to the plane are given by

(27)

where 8 is the angle which the normal to the plane makes with the positive K-axis.

3. RAYLEIGH-LAMB WAVES

As a simple application of the preceding analysis we consider the problem of coalescence of
cut-off frequencies for Rayleigh-Lamb waves in an infinite, isotropic, elastic plate of thickness
2b, with the two major faces of the plate free of traction[l]. For motion symmetric with respect
to the middle plane of the plate, the frequency equation is

(28)

where

0= 2wb/(7TVs)

K =b~. (29)

In this equation b is the half-thickness of the plate, ,\ and IL are the two Lame's constants of
linear elasticity, p is the mass density of the plate material, c is the ratio of the dilatational and
shear wave speeds in an unbounded, elastic, isotropic medium, w is the circular frequency in
radians per unit of time, 0 is the non-dimensional frequency, a and 13 are the non-dimensional
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wave-numbers in the thickness direction and K is the non-dimensional wave-number in the
direction of wave propagation.

From eqn (28) we find that the first derivative FK vanishes when K == 0, and the function F
along with the first derivative Fa vanish simultaneously for K == 0, when

that is, when

sinf3 == 0, cos a 0, (30)

il==q,

il == cp,

q == 2,4,6, ...

p == 1,3,5, ... (31)

Thus the coordinates of the critical point are Ko == 0 and no == q == cpo It therefore follows that
there will be coalescence of cut-off frequencies at Ko == 0, when the two Lame's constants satisfy
the equality c == qlp, that is when AI J.L == (qjp)2 - 2, or in terms of Poisson's ratio
v == ![(qjp)2 - 2]j[(qjp)2 -1].

At the critical point FOcK. == 0, and the remaining two second derivatives are

(32)

Therefore, it follows from eqns (15) and (32) that the slopes of the two tangent lines to the
spectral curves at the point of coalescence are

(ail)'" _ -( F. IF. )1/2 - 8
aK -+-- 0000 ==+1T2q' (33)

These are the slopes of the thickness-shear and thickness-stretch (reflected about K == 0) branches
at coalescence of cut-off frequencies and agree with the results first obtained by Mindlin[l, p.
2.44]. The equations of the tangent lines to the spectral curves are

!}'" = q + 83K,
1Tq

and the angie between the two tangent lines in the (il, K)-plane is

(34)

(35)

The point of coalescence of the two spectral branches at zero wave-number is a contact point
of order one. Therefore the two spectral curves meeting at this point do not cross each other, but
rather intersect at two coincident points.

Finally it may be mentioned that there may be other critical points in the spectrum, possibly
for imaginary values of the wave-number K. Simultaneous solution of the three equations
F == Fa == FK== 0 determines n, K and Poisson's ratio v -for which such critical points may exist.

4. FLOQUET WAVES OF THE 8H-TYPE

As an example of critical points of a spectral surface, we consider the propagation of
time-harmonic, horizontally polorized shear waves in a periodically layered medium of infinite
extent. The material medium is assumed to consist of periodically repeating, perfectly bonded
layers. Two such contiguous layers of thickness {2h; 2h ' } form a typical unit cell, with lattice
distance d == 2(h + hi). The two elastic constants in each layer of the unit cell are {h; h'}:
{(A,IL); (A',IL')} and the mass density of the layers of a typical unit cell is {h;h'}:{p;p'},
respectively. In a recent paper by Delph. Herrmann and Kaul [3], it has been shown that the
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spectral equation in this case may be obtained by making use of Floquet's theory of differential
equations with periodic coefficients[4]. In non-dimensional form the spectral equation is

where

[fil(a, ", A) = [cos 1T(I + t)A - cos 1TlX cos 1Tt,,],

[fi,(a, ,,) =: sin 1TlX sin 1Tt",

Ct = (02 - K 2)112,

" = (U
20 2

_K
2
)J!2,

Y =: p.,/p.:; t =h' /h; (J'2 =(c/c'l,

c2=p.,/p; (C')2=p.,'/p',

A = (2h/1T)k2; K = (2h/1T)k3'

0= w/w,; w., = (1T/2h)(p.,/p)1J2.

(36)

(37)

In these equations Aand K are the two non-dimensional wave-numbers, ,\ being the wave-number
in the direction of the periodicity of the layering, and K being the wave-number in the mutually
orthogonal non-periodic direction. The reference frequency w, is the lowest antisymmetric
thickness-shear frequency of an infinite, homogeneous, isotropic plate of thickness 2h, and 0 is
the non-dimensional frequency.

The spectral eqn (36) represents a surface in three-dimensional (0,'\, K)-affine space, and
according to Floquet theory the spectrum is periodic in the direction of the layering with real
period A 2/(1 + t). Therefore in the direction of the layering the width of the Brillouin zone is
Ao= I/O + t). Due to inversion symmetry and the periodic property of the spectral function F, the
slopes of the dispersion surface (iJO/iJA)K and (iJK/iJA)n at the end-points of the Brillouin zone are
zero, in general. However, at certain singular points of the dispersion surface, these derivatives
may acquire a non-zero value, which suggests that the slope of the surface at these singular points
may be discontinuous. This analysis is aimed at investigating the nature of the surface in the
immediate neighborhood of these exceptional points.

From the analysis presented in Section 2, the singular points are those roots of frequency eqn
(36), where the three first partial derivatives vanish simultaneously. In the present case the three
first partial derivatives of the function Fare

FA = -21Ta"yO + t) sin 1T(l + t)A,

R = -2KY(~+~) [cos 1TO +t)A -cos 1Ta cos 1Tt,,]- ;K [ty2a 2+(t +2y),,2] sin 1TlX cos 1Tt"

- :!!!5: [,,2 + (y + 2t )ya2] cos 1TCt sin 1Tt" - 2K0 + y2) sin 1Ta sin 1Tt",
a

Fn=2yO (~+U2~) [cos 1TO + t),\ -cos 1Ta cos 1Tt,,]

+ 1T"O [(yua)2t + (2y + t(2),,2] sin 1TCt cos 1Tt"

+ 1Tn [(y + 2t(J'2)ya2+ ,,2] cos 1Ta sin 1Tt"
Ct

Now consider the equation FA = 0, which has the roots

Ao=s/O+t), s=0,1,2,3, ...

USS Vol. n, No. ~D

(38)

(39)
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provided a and ~ are non-zero. These roots define the end-points of the Brillouin zone, which
indicates that the critical points of the dispersion surface are located at the end-points of the
zone. At the end-points of the Brillouin zone, eqn (36) can be factored into the product of two
simple transcendental equations. Thus, when s is an even integer, eqn (36) uncouples into two
equations

and when s is an odd integer, the two uncoupled equations are

(40)2

In the (0, I()Ao-plane, the locus of the roots of these equations represent plane curves and we are
interested in the coordinates of those points where the plane curves have a contact point of order
1. In order that two plane curves have a contact point of order 1, it is necessary and sufficient that
at the point of contact, the functions along with their first partial derivatives be equal. Thus,
consider eqn (40)1, which is valid for even values of integer s. These two equations have a
zero-order contact when the roots of the two equations are the same. This requires that for even
values of integer s the roots must satisfy one of the following three conditions

(i)
• 1r °sm'2 a = , ao=2n

(ii)

(iii)

sin¥t~ = 0, tl30 = 2m

1r
cos '2 tl3 =0, t~o =(2m -1)

1r 1r
tan '2 a +tan '2 t~ =0, ao =2n/O + 'Yt)

'Ya -13 = 0, /30 =2n'Y/O +"It)

(4th

where in these equations n, m = 1,2,3, .... Similarly for odd values of integer s, the roots of eqn
(40)2 are contact points of order zero, if they satisfy one of the following three conditions

(i)
ao=2n

(ii)

(iii)

1r
cos '2 t/3 = 0, t/3o (2m - 1)

1rcos '2 a = 0, ao = (2n -1)

sin¥t/3 = 0, ~o = 2m

1r 1r /tan '2 a - cot '2 t/3 = 0, ao = (2n - 1) (l + 'Yt )

'Ya -13 =0, 130 = 'Y(2n - 1)/0 + 'Yt)

(42)2

(42h
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where in these equations n, m = 1,2,3, .... We may here remark that from the zero-order
contact points we have specifically excluded the roots ao =0, f30 =O. It has been shown in Ref. [3}
that ao = 0cannot be a root of eqn (36) and thus is not a possible contact point. We now show that
f30 = 0 is also an inadmissible contact point.

From the first of eqn (40)1, we find that when f30 =0, the equation is satisfied when
a sin (71'f2)a =O. Excluding the root ao 0, the non-trivial roots of this equation are ao =2n,
n = 1,2,3, .... Now consider the second of eqn (40)1' This equation is satisfied identically when
f30 = O. Therefore, using the turning point theorem [5], we get the limiting form of the frequency
equation

71' 2'71' 071'ayt cos "2 a + sm"2 a = , (43)

whose roots give us the admissible values of a when f30 = O. Since ao = 2n fails to satisfy this
transcendental frequency equation, it can be concluded that the two eqns (40)1 do not have a
contact point when f30 =O. A similar analysis shows that the two eqns (4O)z have also no contact
points when f30 = o.

At these zero-order contact points, the three first derivatives Foeo, Fno and FIIo also vanish
simultaneously. Hence, the critical points of the spectral surface are contact points of order one,
with coordinates

Ao=sfO+t), s=0,1,2,3, ...

no = [(ao2- f302)f(l- (7
2)]1/\

Ko = [(ao2
(T2 - f302)/(l- (T2)f/2, (44)

where for s-even (odd) the values of ao and f30 are given by eqn (41) (eqn 42). According to the
discussion in Section 2, these are the coordinates of the conical points where the spectral
surfaces touch each other at two coincident points without crossing each other.

The mode shapes corresponding to the uncoupled forms of the frequency eqns (4Ob have
been fully discussed in Ref. [3). Avoiding minutiae we may briefly reiterate that the first of eqn
(40)1 is valid when the motion with respect to the respective mid-planes of each of the two
laminae comprising the unit cell is symmetric, and the second of eqn (40)1 holds when the motion
of each lamina in the cell is antisymmetric. Similarly, the first of eqn (40)2 is valid when in the
portion of the cell with unprimed constants the motion is symmetric, and in the remaining portion
of the cell with primed constants, the motion is antisymmetric. In both cases the symmetry is
defined with respect to the mid-planes of the layers. The converse is true in the case of second of
eqn (40)2' Thus, the conical points with coordinates given by eqns (44) and (41), corresponding to
the end-points of the Brillouin zones (s-even), are first order contact points of the dispersion
spectra belonging to the symmetric-symmetric and antisymmetric-antisymmetric families.
Similarly when sis an odd integer, the conical points with coordinates given by eqns (44) and (42),
are first order contact points of the dispersion spectra belonging to the symmetric-antisymmetric
and antisymmetric-symmetric families.

To investigate the nature of the dispersion surface in the neighborhood of the conical points,
we need the six second derivatives of the spectral function F(fi, a, f3). On differentiating again
eqn (38), we get

(45)1
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+20
2

[ 'Y(a~:~fln2+ 7T2('Y +ta2) (~+ t'Ya2 ~)Jcos 7Ta cos 7Tt{3

-7T20 2
[ (~+ t'Ya2 ~) 2 + ('Y + ta2f Jsin 7Ta sin 7Tt{3

+7T0
2[2'Y ~: - t'Y2a4 ~: +a 2(4'Y +4t'Y2 +3ta2)J~ sin 7Ta cos 7Tt{3

+7T02[ 2t'Ya4 ~: - ~:+(4a2+4t'Ya2 +3l)J~ cos 7Ta sin 7Tt{3,

_.! __ 2 (a 2- r{)2
F kk K F k - 2'YK (af3)3 cos 7T(1 + t)'\

+ 2K
2

[ 'Y (a(~~~2)2 + 7T2('Y + t) (~+ 'Yt~)] cos 7Ta cos 7Tt{3

- 7T
2
K

2
[( 'Y + t)2 +(~+ 'Yt ~rJ sin 7Ta sin 7Tt{3

+ 7TK
2

[(3t +4'Y +4tl) + 'Y (2 ~: - t'Y ~:)J~ sin 7Ta cos 7Tt{3

+ 7TK
2

[(4 +4'Yt +3'Y2
) + (2t'Y ~: - ~:)J~ cos 7Ta sin 7Tt{3, (45h

_ (a 2-{32)(a2a 2_{32)
FOk - 2'Y0K (a{3)3 cos 7T(1 + t)'\

-OK [ 2'Y (a
2
-{3~~~;:r2 _{32) + 7T2{[2'Y +(1 +a 2)t] ~+ t'Y[2ta2+(1 +a 2)'Y] ~}J

x cos 7Ta cos 7Tt{3 + 7T 2KO [2'Yt(1 +a 2)+ ('Y - at)2 + (t'Ya~ +~rJ sin 7Ta sin 7Tt{3

-7TKO [2'Y {(1 + 'Yt)(1 +a
2
)+(~r} + ta

2
(3 - 'Y

2~:)J~ sin 7Ta cos 7Tt{3

-7TKO [2(1 + 'Yt)(1 +a
2
)+3'Y2+2'Yta2 ~: - ~:J ~ cos 7Ta sin 7Tt{3. (45)6

For the purpose of illustration, consider now a typical conical point located at the end of the
Brillouin zone s = 3, with abscissa

'\0 = 3/(1 + t),

and in accordance with eqn (42)1, for odd values of integer s, let

ao = 2n, n = 1

t{3o = (2m - 1), m=1.
(46h

For this particular choice of the conical point, henceforth labeled P~, the coordinates from eqn
(44) are

'\0 = 3/(1 + t),

0 0 = [{4n 2- (2m - l)2/f}/(1- a2)] 1/2 ,

Ko = [{4a2n2- (2m - V/f}/(1- a 2)]'/2. (47)

At this point Po*, the two mixed derivatives Fn.,Ao and F kOAo vanish simultaneously, and the
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remaining four second derivatives are explicitly given by

433

F =-2 2002( +t 2)[(2m-1)2+-yu
2
e(2n)2]

non., 1r -y u 2n(2m -1)t '

F = -2 2 2( + t) [(2m - 1)2 +ye(2n )2J
KOKO 1r Ko -y 2n(2m - 1)t '

FfIoKo = 2n7;~~;)t [{2-y +(l +( 2)t}(2m -1)2 +{2tu2+-y(l +( 2)}(2n)2-yt
3

]. (48)

Therefore the locus of the tangents to all curves on the spectral surface passing through the point
P0* is given by

where the coordinates of the point Po*: (00, Ao, Ko) are given by eqn (47) and the four second
derivatives are explicitly given by eqn (48). Now

which is the discriminant of the quadratic form (49), and is non-zero when

ut: 1, (2m -1)/2n t: -yt.

(50)

(51)

Therefore there exists a non-singular affine-mapping (23), which reduces the quadric surface (49)
to an elliptic cone (24), since Fnon., < O. The eccentricity of the ellipse is e = (l +FfIofIo!F"oJ..o)112,
where

(52)

Using the extended zone scheme, the shape of the spectral surface in the neighborhood of the
conical point Po* is shown qualitatively in Fig. 1.

We now considerplane sections of the surface, passing through the critical point P: and parallel
to the coordinate planes. These sections are plane curves and we write down explicitly the
equations of the tangent lines to the sectional curves at the point P:, and the angle between them.

n

J:-r-+_--,~c...:>"~o---~-,A
/ /

/ /
, / /

IV / /
: I __:6/ /

/ /
/ /

/ /
/ /

BRILLOUIN ZONE~ / / /

Ie // /

Fig. l. Qualitative sketch of the spectral surface in the neighborhood of a typical conical point P0*'
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(i) Plane K = Ko passing through the conical point Pt
In this case the equations of the tangent lines are given by eqn (7). When Fn.,AO == 0 and

Fnono < 0, the slopes of the two tangent lines are

Substituting the values of second derivatives from (48), we get

± _ (I + t)(2n)(2m - I)
a = + 0 0[(1 + «(1"2/ y )t){(2m _1)2+ y(1"2 t3(2n)2}r'2'

(53)

(54)

For n = I, m = 1, y =0.02, (1"2 =0.06 and t =4.0, the coordinates of the point Po* are
0 0 =2.04666, '\0 =0.600 and Ko =0.43455. From eqn (54) the slope of the tangent lines to the
spectral curves passing through the point Po* are a± = +:1.18525. The tangent of the angle
between the two tangent lines is

For the given values of the parameters, tan ¢J = -5.855593, or equivalently
¢J =99°.41'.28"(80°.18' .32").

The tangent line with slope a- and passing through the point Po*, is shown in Fig. 2(c), which
is plotted on an extended zone scheme. At the point of coalescence, the two curves defined by the
intersection of the plane K = Ko with the spectral surface in the adjoining Brillouin zones meet at
one point with non-zero slope. Consequently, the group velocity in the ,\ -direction is non-zero at
the point of confluence of two spectral curves. In addition, the stopping band disappears
completely. The gradual decrease in the width of the stopping band, till it disappears, and its
reappearance with gradual increase of the wave-number K, is exemplified in the sequence of
graphs (a) to (e) of Fig. 2.

(ii) Plane ,\ = '\0 passing through the conical point Pt
In this case the equations of the tangent lines are given by eqn (15), where (3± are the slopes of

the tangent lines passing through the point P0*' Substituting the values of the second derivatives
F nono, F KOKO and Fn.,Ko from (48) in eqn (16), we get

+ _ Ko[(2m - 1)2 + ye(2n )2]
{3 - Oo[(2m - 1)2 + Y(1"2 t3(2nf]'

(56)

In this case the two distinct values of the slopes are both real and the point P0* is like the node of
a lemniscate. For the same values of the parameters used in case (i), the numerical values of the
slopes of the tangent lines to the spectral curves passing through the point Po* are {3+ = 0.99404
and {3- = 3.28282. The tangent of the angle between the two tangent lines is

For the given values of the parameters, tan ¢J = 0.536863, or equivalently ¢J = 28°.13'.47"
(151°.46'.13").

The two tangent lines with slopes {3+ and (3 - are shown in Fig. 3(c). The contact point is of
order 1 and the two curves intersect each other at two coincident points but do not cross. This
becomes immediately obvious if one plots the sequence of curves on the reduced zone scheme as
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Fig. 2. Behavior of the stopping band due to gradual change in wavenumber K. Coalition occurs at point Po·
where group velocity become finite. Stopping band is shown hatched.

shown in Fig. 3. In this figure the spectral curves are plotted on a reduced zone scheme for
Ao =3/0 + t) ± ~A, where (a): ~A =0.010, (b): ~A =0.005, and (c): ~A =O. Figure 3(c) clearly
shows how the two spectral curves meet each other at the point Po·, without crossing.
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~" I 1 K, 3 4 .5
22

20

.n
18

16 (c)

:( Sf' ! I K
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Fig. 3. Behavior of the spectra in the neighborhood of the conical point Po·, in the (0, K)-planes for values of
Ao± oli.
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Fig. 4. Isofrequency level-curves in the neighborhood of the conical point P0*' in the (A, K)-planes for values
of flo±JiO.

(iii) Plane 0 = 0 0 passing through the conical point Pt
In this case FKOKO"l- 0, and the equations of the tangent line to the isofrequency level-curves

passing through the point Po* are given by eqn (18). Since F AoKO == 0, FAoAo > 0 and F KOKO < 0 at Po*,
the slopes of the two tangent lines are

Substituting the values of the second derivatives, we get

± _ _ (1 + t)(2m -1)(2n)
y - + Ko[(1 + tly){(2m -If + ye(2n)2}] 1/2'

(58)

(59)

For the same values of the parameters used in (i) and (ii), the numerical values of the slopes of the
tangent lines to the isofrequency level-curves are y± = +0.656132. The tangent of the angle
between the two tangent lines passing through the point P0* is

t 4> - -2Ko(1 + t)(2n)(2m -1)[(1 + tly){(2m _1)2+ yt 3(2nf}]1/2
an - {K02(1 + tly)[(2m _1)2 + yt 3(2n)2] - (2n)2(2m _1)2(1 + t)2}' (60)

For the given values of the parameters, tan 4> = -2.304213, or equivalently 4> = 133°.27' .37"
(66°.32' .23"). Amongst all planes passing through the point Po*, there is one plane which intersects
the surface at only one point. The normal to this plane is given by (cos 8, sin 8): (-0.42360,
0.90585), that is 8 = 115°.3'.40" measured from the positive K-axis.

To gain some understanding of the spectral surface, a few isofrequency level-curves have
been plotted in Fig. 4. Figure 4(c) shows the level-curve passing through the conical point Po*.
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